

Mr. Wright's Math Extravaganza

Precalculus Trigonometry

Level 2.0: 70% on test, Level 3.0: 80% on test, Level 4.0: level 3.0 and success on applications

Score	I Can Statements		
4.0	□ I can demonstrate in-depth inferences and applications that go beyond what was taught.		
3.5	In addition to score 3.0 performance, partial success at score 4.0 content.		
	□ I can use radians.		
3.0	□ I can evaluate trigonometric functions.		
	□ I can graph trigonometric functions.		
	□ I can use inverse trigonometric functions.		
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content.		
	□ I can draw angles in standard position.		
2.0	□ I can convert between degrees and radians.		
	□ I can use the unit circles to evaluate trigonometric functions.		
	□ I can use right triangles to evaluate trigonometric functions.		
	□ I can use basic trigonometric identities.		
	□ I can evaluate trigonometric functions using reference angles.		
	□ I can evaluate compositions of inverse functions.		
	□ I can solve problems with right triangles and trigonometry.		
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content.		
1.0	With help, partial success at score 2.0 content and score 3.0 content.		
0.5	With help, partial success at score 2.0 content but not at score 3.0 content.		
0.0	Even with help, no success.		

4-01 Angle Measures

 90°

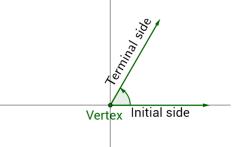
 270°

Quadrant I

Quadrant IV

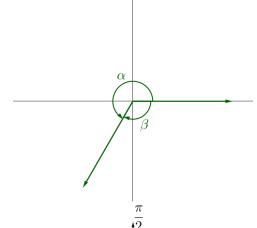
 0°

 $\overline{3}60^{\circ}$


Quadrant II

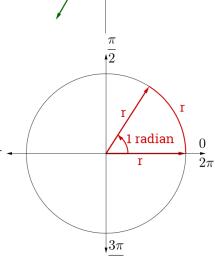
Quadrant III

180°


Angles in standard position

- Vertex at _____
- Initial side on positive _____
- Terminal side rotates _____

Coterminal Angles


- 2 angles with same sides, but different
- To find coterminal angles

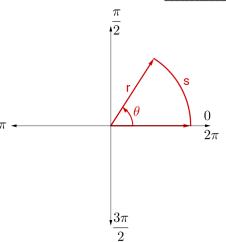
Angle Measures

- Degree Measures
- Radian Measures
 - Angle where radius =
- Acute → _____
- Obtuse →
- Complementary $\rightarrow \alpha + \beta =$

• Supplementary $\rightarrow \alpha + \beta =$ Find a coterminal angle with $\theta = -\frac{\pi}{8}$

Find the supplement of $\theta = \frac{\pi}{4}$

Convert radians to degrees: $180^{\circ} = \pi$

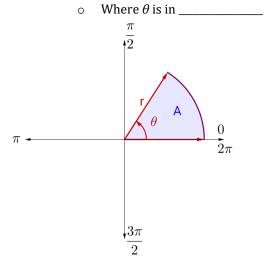

Convert 120° to radians

Applications

• Arc Length

0 _

Where θ is in _____



Area of Sector

 \circ A = fraction of circle $\times \pi r^2$

$$\circ \quad A = \frac{\theta}{2\pi} \times \pi r^2$$

V _____

Speeds

o Angular speed: _____

o Linear speed (tangential): _____

0 _____

A 6-inch diameter gear makes 2.5 revolutions per second. Find the angular speed in radians per second.

How fast is a tooth at the edge of the gear moving in in./s?

4-02 Unit Circle

Unit circle

r = 1

$$x^2 + y^2 = 1$$

Trigonometric Functions (Unit circle)

 $\sin t =$

$$\csc t =$$

 $\cos t =$

$$\sec t =$$

tan t =

$$\cot t =$$

Evaluate 6 trig functions of $t = \frac{2\pi}{3}$

Evaluate

 $\sec \frac{4\pi}{3}$

 $\sin 2\pi$

 $\tan \frac{\pi}{2}$

 $csc \frac{11\pi}{6}$

 $\cot \frac{3\pi}{4}$

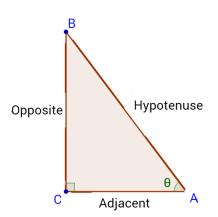
cos 0

Evaluate

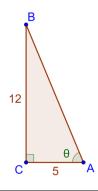
$$\sin\left(-\frac{2\pi}{3}\right)$$

 $\cos \frac{9\pi}{3}$

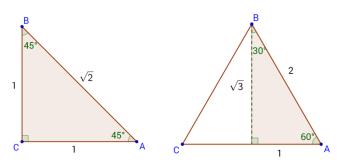
$$\sin\left(-\frac{11\pi}{2}\right)$$


4-03 Right Triangle Trigonometry

$$\sin A = \frac{opp}{hyp}$$


$$\cos A = \frac{adj}{hyp}$$

$$\tan A = \frac{opp}{adj}$$


$$\csc A = \frac{hyp}{opp}$$
$$\sec A = \frac{hyp}{adj}$$
$$\cot A = \frac{adj}{adj}$$

Find the values of the six trig functions

Special right triangles

 $\sin \frac{\pi}{4}$

 $\csc \frac{\pi}{3}$

tan 30°

Sketch a triangle and find the other 5 trig functions: $\tan \theta = 3$

4-04 Right Triangle Trigonometry and Identities

Basic Identities

Reciprocal

$$\sin u = \frac{1}{\csc u}$$

$$\cos u = \frac{1}{\sec u}$$

$$\tan u = \frac{1}{\cot u}$$

$$\csc u = \frac{1}{\sin u}$$

$$\sec u = \frac{1}{\cos u}$$

$$\cot u = \frac{1}{\tan u}$$

Quotient

$$\tan u = \frac{\sin u}{\cos u}$$

$$\cot u = \frac{\cos u}{\sin u}$$

Pythagorean

$$\sin^2 u + \cos^2 u = 1$$

$$1 + \tan^2 u = \sec^2 u$$

$$\cot^2 u + 1 = \csc^2 u$$

Note: $\sin^2 u = (\sin u)^2$

Cofunction Identities

$$\sin(90^{\circ} - u) = \cos u$$
$$\sec(90^{\circ} - u) = \csc u$$

$$\cos(90^{\circ} - u) = \sin u$$

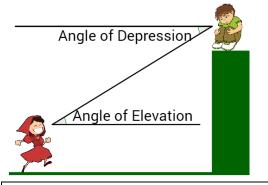
$$\sec(90^\circ - u) = \csc u$$
$$\tan(90^\circ - u) = \cot u$$

$$csc(90^{\circ} - u) = sec u$$
$$cot(90^{\circ} - u) = tan u$$

Let
$$\theta$$
 be an acute angle such that $\cos \theta = 0.96$

Find
$$\sin \theta$$

$$\tan \theta$$


Let β be an acute angle such that $\tan \beta = 4$

Find $\cot \beta$

 $\sec \beta$

Angles of Elevation and Depression

Both are measured from the ______

A 12-meter flagpole casts a 6-meter shadow. Find the angle of elevation of the sun.

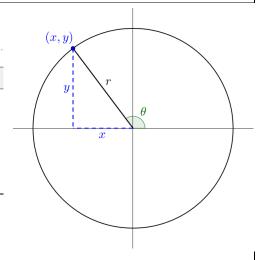
4-05 Trigonometric Functions of Any Angle

Circular Trig Functions

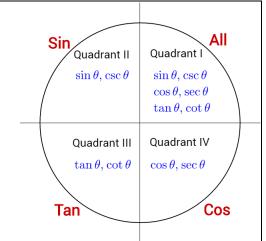
 $\sin \theta =$

 $\csc \theta =$

 $\cos \theta =$ _____

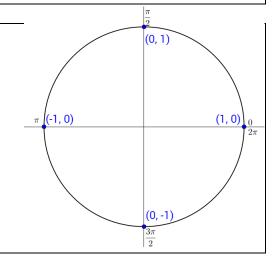

 $\sec \theta =$

 $\tan \theta =$


$$\cot \theta =$$

 $r = \sqrt{x^2 + y^2}$

Let (-2, 3) be a point on the terminal side of θ . Find sine, cosine, and tangent of θ .



Given $\sin \theta = \frac{4}{5}$ and $\tan \theta < 0$, find $\cos \theta$ and $\csc \theta$.

Evaluate $\sin \pi$

 $\tan \frac{\pi}{2}$

Reference Angle

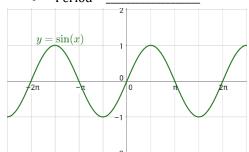
Angle between _____side and nearest ______

Find the reference angle for $\frac{5\pi}{4}$

Find the reference angle for $\frac{5\pi}{3}$

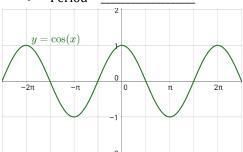
Use a reference angle to evaluate $\cos \frac{5\pi}{3}$

sin 150°


Use a reference angle to evaluate $\tan \frac{11\pi}{6}$

Let θ be an angle in quadrant III such that $\sin\theta=-\frac{5}{13}$. Find $\sec\theta$ $\tan\theta$

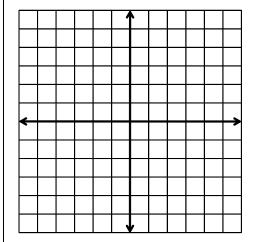
4-06 Graphs of Sine and Cosine


 $y = \sin x$

- Starts at _____
- Amplitude = _____
- Period = _

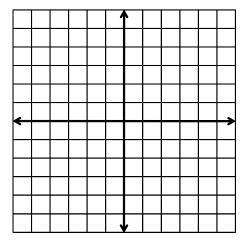
 $y = \cos x$

- Starts at _____
- Amplitude = _____
- Period = __

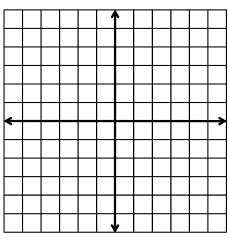


Transformations

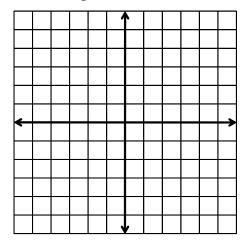
$$y = a\sin(bx - c) + d$$


- *a* = vertical _____
 - o Amplitude = ______
- *b* = horizontal _____
 - Period ______
- *c* = horizontal ______
 - o **Phase shift** ______ (Right if c is positive)
- *d* = vertical _____
 - o Midline _____

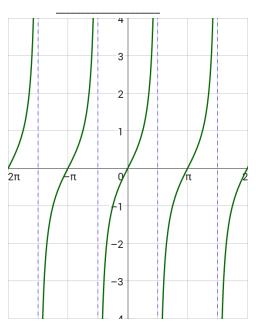
Graph $f(x) = 2 \sin x$



Precalculus 4-06 Name: _____


Graph $y = \cos \frac{x}{2}$

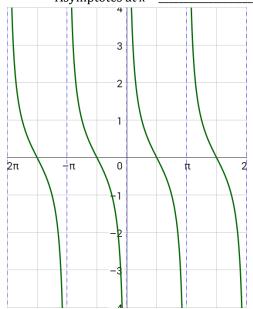
Graph
$$y = 2\sin\left(x - \frac{\pi}{2}\right)$$


Graph
$$y = -\frac{1}{2}\sin(\pi x + \pi) + 1$$

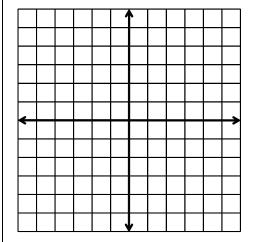
4-07 Graphs of Other Trigonometric Functions

 $y = \tan x$

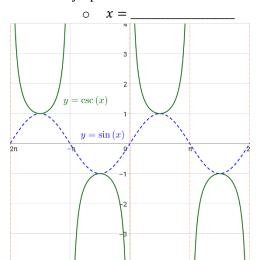
- Period = _____
- Asymptotes where tangent undefined, x =

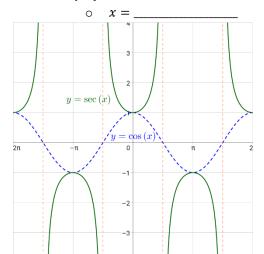


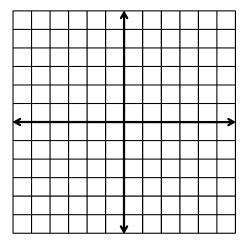
 $y = \cot x$


• Period = _____

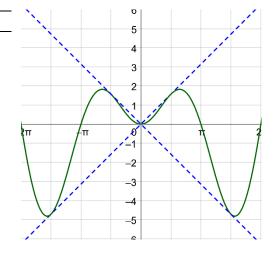
0 _____


Asymptotes at x = _____

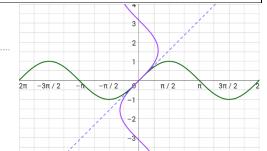

Graph $y = \tan \frac{x}{4}$


- Period = _____
- Asymptotes where sine = 0

- Period = _____
- Asymptotes where cosine = 0

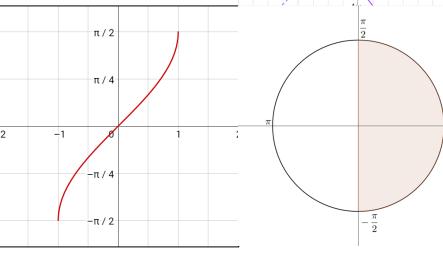


Graph $y = 2 \csc\left(x + \frac{\pi}{2}\right)$


Damped Trig Functions

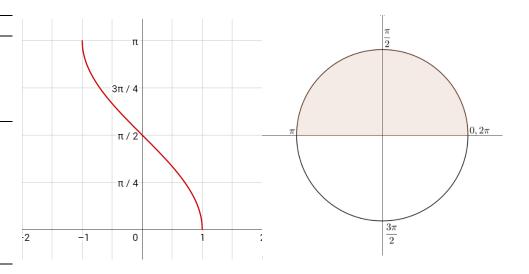
- $y = x \sin x$
- The *x* is the _____function
- Graph the _____function and its _____over *x*-axis
- Graph the trig _________

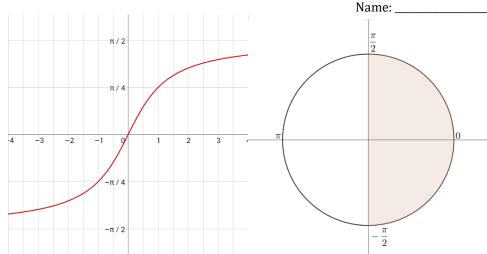
4-08 Inverse Trigonometric Functions


- Inverses switch _____
- graph over y = x
- $y = \sin x \leftrightarrow x = \sin^{-1} y$
- Inverse trig functions give the _______

Inverse Sine

- $y = \sin^{-1} x$
- $y = \arcsin x$
- Domain: _____
- Range: _____


arcsin(-1)


Inverse Cosine

- $y = \cos^{-1} x$
- $y = \arccos x$
- Domain: _____
- Range: _____

 $\arccos \frac{1}{2}$

- Inverse Tangent
 - $y = \tan^{-1} x$
 - $y = \arctan x$
 - Domain: _____
 - Range: _____

Evaluate

$$\sin^{-1}\left(\frac{1}{2}\right)$$

$$\arcsin \sqrt{3}$$

$$\cos^{-1}\frac{\sqrt{3}}{2}$$

$$\arctan \frac{\sqrt{3}}{3}$$

4-09 Compositions involving Inverse Trigonometric Functions

and _____, then $\circ \sin(\arcsin x) = \underline{\qquad} \text{and } \arcsin(\sin y) = \underline{\qquad}$

tan(arctan(-14))

 $sin(arcsin \pi)$

 $\arcsin\left(\sin\frac{5\pi}{3}\right)$

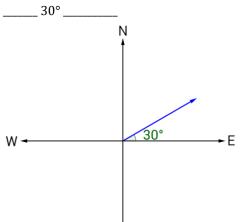
 $\arccos\left(\cos\frac{7\pi}{6}\right)$

 $\tan^{-1}(\cos \pi)$

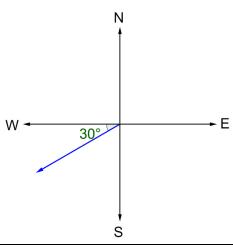
 $\cos^{-1}\left(\sin\left(\frac{\pi}{6}\right)\right)$

 $\cos\left(\tan^{-1}\left(-\frac{3}{4}\right)\right)$

 $\sin\left(\cos^{-1}\left(\frac{2}{3}\right)\right)$


sec(arctan x)

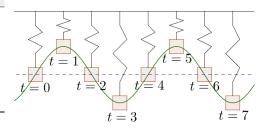
Precalculus 4-10	Name:		
	Precalculus		
4-10 Appli	ications of Right Triangle Trigonometry		
Right triangle trigonometry			
1. Draw aand label it 2			
A ladder leaning against a house reaches 24 ft us is the base of the ladder from the house?	up the side of the house. The ladder makes a 60° angle with the ground. How far		


4-11 Bearings and Simple Harmonic Motion

Bearings

Bearings show ______

_____ 30° ____



A sailboat leaves a pier and heads due west at 8 knots. After 15 minutes the sailboat tacks, changing course to N 16° W at 10 knots. Find the sailboat's bearing and distance from the pier after 12 minutes on this course.

Simple Harmonic Motion (SHM)

- $y = a \sin \omega x$
- $y = a \cos \omega x$
- Period _____
- Frequency (cycles per second) _______

• Equilibrium is the _____ Find a model for simple harmonic motion with displacement at t=0 is 0, amplitude of 4 cm, and period of 6 sec.

Given the equation for simple harmonic motion $d=4\cos 6\pi t$

Find maximum displacement

Find frequency

Find value of d when t = 4

Find the least positive value of t for which d = 0